

SERS-Based Evaluation of the DNA Methylation Pattern Associated With Progression in Clonal Leukemogenesis of Down Syndrome

Vlad Moisoiu^{1†}, Valentina Sas^{2,3†}, Andrei Stefancu^{1†}, Stefania D. Iancu¹, Ancuta Jurj⁴, Sergiu Pasca², Sabina Iluta², Alina-Andreea Zimta⁵, Adrian B. Tigu⁵, Patric Teodorescu², Cristina Turcas², Cristina Blag², Delia Dima², Gheorghe Popa³, Smaranda Arghirescu^{6,7}, Sorin Man³, Anca Colita^{8,9}, Nicolae Leopold^{1,10*} and Ciprian Tomuleasa^{2,5,11*}

¹ Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania, ² Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, ³ Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, ⁴ Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, ⁵ Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, ⁶ Department of Pediatrics, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania, ⁷ Department of Pediatrics, Louis Turcanu Emergency Hospital for Children, Timisoara, Romania, ⁸ Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania, ⁹ Department of Pediatrics, Fundeni Clinical Institute, Bucharest, Romania, ¹⁰ Biomed Data Analytics SRL, Cluj-Napoca, Romania, ¹¹ Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania

Here we show that surface-enhanced Raman scattering (SERS) analysis captures the relative hypomethylation of DNA from patients with acute leukemia associated with Down syndrome (AL-DS) compared with patients diagnosed with transient leukemia associated with Down syndrome (TL-DS), an information inferred from the area under the SERS band at 1005 cm⁻¹ attributed to 5-methycytosine. The receiver operating characteristic (ROC) analysis of the area under the SERS band at 1005 cm⁻¹ yielded an area under the curve (AUC) of 0.77 in differentiating between the AL-DS and TL-DS groups. In addition, we showed that DNA from patients with non-DS myeloproliferative neoplasm (non-DS-MPN) is hypomethylated compared to non-DS-AL, the area under the SERS band at 1005 cm⁻¹ yielding an AUC of 0.78 in separating between non-DS-MPN and non-DS-AL. Overall, in this study, the area of the 1005 cm⁻¹ DNA SERS marker band shows a stepwise decrease in DNA global methylation as cells progress from a pre-leukemia to a full-blown acute leukemia, highlighting thus the potential of SERS as an emerging method of analyzing the methylation landscape of DNA in the context of leukemia genesis and progression.

Keywords: SERS, down syndrome, acute leukemia, transient leukemia associated with down syndrome, myeloproliferative neoplasm

OPEN ACCESS

Edited by:

Aidan D. Meade, Technological University Dublin, Ireland

Reviewed by:

Ravi Manjithaya, Jawaharlal Nehru Centre for Advanced Scientific Research, India Long Ma, Tianjin University of Science and Technology, China

*Correspondence:

Nicolae Leopold Nicolae.Leopold@ubbcluj.ro Ciprian Tomuleasa Ciprian.Tomuleasa@umfcluj.ro

[†]These authors have contributed equally to this work and share first authorship

Specialty section:

This article was submitted to Nanobiotechnology, a section of the journal Frontiers in Bioengineering and Biotechnology

> Received: 30 April 2021 Accepted: 30 June 2021 Published: 23 July 2021

Citation:

Moisoiu V, Sas V, Stefancu A, lancu SD, Jurj A, Pasca S, Iluta S, Zimta A-A, Tigu AB, Teodorescu P, Turcas C, Blag C, Dima D, Popa G, Arghirescu S, Man S, Colita A, Leopold N and Tomuleasa C (2021) SERS-Based Evaluation of the DNA Methylation Pattern Associated With Progression in Clonal Leukemogenesis of Down Syndrome. Front. Bioeng. Biotechnol. 9:703268. doi: 10.3389/fbioe.2021.703268

Abbreviations: SERS, surface-enhanced Raman scattering; AL, acute leukemia; AL-DS, acute leukemia associated with down syndrome; TL-DS, transient leukemia associated with down syndrome; MPN, myeloproliferative neoplasm; Non-DS-MPN, non-down syndrome myeloproliferative neoplasm; Non-DS-AL, non-down syndrome acute leukemia.